Abstract:With regard to a solution problem of the interval-valued multiobjective cooperative games with payoffs of inclusion and/or overlap relations, two-phase nonlinear programming models and method are proposed. In view of the multiobjective factors in real decision problem, the relation of interval ranking and the concept of interval-valued cores of interval-valued multiobjective cooperative games based on the satisfactory degree are defined. Hereby, the multiobjective two-phase nonlinear programming solution models and corresponding bisection steps are proposed. The feasibility and applicability of the models and method are illustrated with a numerical example.
洪防璇 李登峰. 基于满意度的区间型多目标合作对策求解模型[J]. , , (): 0-0.
LI Deng-Feng. The Solution Models for Interval-valued Multiobjective Cooperative Games based on the Satisfactory Degree. , , (): 0-0.
[1] Owen, G. Game Theory [M]. New York: Academic Press,1982.[2] 李登峰. 模糊多目标多人合作决策与对策[M]. 北京:国防工业出版社,2003. [3] Meinhardt, H. An LP Approach to Compute the Pre-kernel for Cooperative Games [J]. Computers & Operations Research, 2006, 33(2): 535-557. [4] Puerto, J. & Perea, F. Finding the Nucleolus of any n-person Cooperative Game by a Single Linear Program [J]. Computers & Operations Research, 2013, 40(10): 2308-2313.[5] Nishizaki, I. & Sakawa, M. Fuzzy and Multiobjective Games for Conflict Resolution [M]. Boston: Physica Heidelberg, 2001.[6] Fern, F.R., Hinojosa, M.A. & Puerto, J. Set-valued TU-games [J]. European Journal of Operation Research, 2004, 159(1): 181-195.[7] Bornstein, C. T., Maculan, N., Pascoal, M. & Pinto, L. L. Multiobjective Combinatorial Optimization Problems with a Cost and Several Bottleneck Objective Functions: an Algorithm with Reoptimization [J]. Computers & Operations Research, 2012, 39(9): 969-976.[8] Perez, F. & Gomez, T. Multiobjective Project Portfolio Selection with Fuzzy Constraints [J]. Annals of Operations Research, 2014, DOI 10.1007/ s10479-014-1556-z.[9] Tanino, T., Muranakaand, Y. & Tanaka, M. On Multiple Criteria Characteristic Mapping Games [J]. Proc MCDM (Taipei), 1992, 2: 63-72.[10] Zhang, S. J. & Wan, Z. Polymorphic Uncertain Nonlinear Programming Model and Algorithm for Maximizing the Fatigue Life of V-belt Drive [J]. Journal of Industrial and Management Optimization, 2012, 8(2): 493-505. [11] Branzei, R., Alparslan, G. & Branzei, O. Cooperative Games under Interval Uncertainty: on the Convexity of the Interval Undominated Cores [J]. Central European Journal of Operations Research, 2011, 19(4): 523-532.[12] Tanino, T. Multiobjective Cooperative Games with Restrictions on Coalitions[A]. Multiobjective Programming and Goal Programming: Theoretical Results and Practical Applications[C]. Berlin Heidelberg :Springer-Verlag, 2009, 167-174.[13] 彭煜,林军,卢谦,张子方. 合作型区间数对策及应用[J]. 预测,2001,20(4):56-59.[14] 于晓辉,张强. 基于区间Shapley值的生产合作利益分配研究[J]. 北京理工大学学报,2008,28(7):655-658.[15] 谭春桥,张强. 具有区间联盟值n人对策的Shapley值[J]. 应用数学学报,2010,33(2):193-203.[16] 孟凡永,张强. 区间合成模糊对策[J].模糊系统与数学,2010,24(1):137-144.[17] 王少龙,叶仲泉.支付函数为模糊数的多目标多人合作对策的纳什谈判解[J]. 模糊系统与数学,2009,23(4):115-119.[18] Moore, R. Methods and Applications of Interval Analysis [M]. Philadelphia: SIAM, 1979.[19] Ishihuchi, H. & Tanaka, M. Multiobjective Programming in Optimization of the Interval Objective Function [J]. European Journal of Operation Research, 1990, 48(2): 219-225. [20] Nakahara, Y., Sasaki, M. & Gen, M. On the Linear Programming Problems with Interval Coefficients [J]. Computer and Industrial Engineering, 1992, 23(1-4): 301-304.[21] Senguta, A. & Pal, T. K. On Comparing Interval Numbers [J]. European Journal of Operation Research, 2000, 127(1): 28-43.[22] Deng-Feng Li, Jiang-Xia Nan & Mao-Jun Zhang. Interval Programming Models for Matrix Games with Interval Payoffs [J]. Optimization Methods and Software, 2012, 27(1): 1-16.[23] 徐泽水,达庆利.区间数的排序方法研究[J]. 系统工程,2001,19(6):94-96.[24] 张全,樊治平,潘德惠. 区间数多属性决策中一种带有可能度的排序方法[J].控制与决策,1999,14(6):703-706.[25] Fei Guan, Deng-yuan Xie & Qiang Zhang. Solutions for Generalized Interval Cooperative Games [J]. Journal of Intelligent and Fuzzy Systems, 2015, 28(4): 1553-1564.[26] Alparslan-G?k, S. Z., Branzei, R. & Tijs, S. H. Cores and Stable Sets for Interval-valued Games [J]. Center for Economic Research, Tilburg University, 2008, 1: 1-14. [27] Sikorski, K. Bisection is Optimal [J]. Numer Math, 1982, 40(1): 111-117.